Showing posts with label RELAYS. Show all posts
Showing posts with label RELAYS. Show all posts

Friday, 20 January 2017

Protective devices and power systems in practice?

Protective devices

Introduction

Power systems contain protective devices to prevent injury or damage during failures. The quintessential protective device is the fuse. When the current through a fuse exceeds a certain threshold, the fuse element melts, producing an arc across the resulting gap that is then extinguished, interrupting the circuit. Given that fuses can be built as the weak point of a system, fuses are ideal for protecting circuitry from damage. Fuses however have two problems: First, after they have functioned, fuses must be replaced as they cannot be reset. This can prove inconvenient if the fuse is at a remote site or a spare fuse is not on hand. And second, fuses are typically inadequate as the sole safety device in most power systems as they allow current flows well in excess of that that would prove lethal to a human or animal.

Fuse plus circuit breaker

The first problem is resolved by the use of circuit breakers—devices that can be reset after they have broken current flow. In modern systems that use less than about 10 kW, miniature circuit breakers are typically used. These devices combine the mechanism that initiates the trip (by sensing excess current) as well as the mechanism that breaks the current flow in a single unit. Some miniature circuit breakers operate solely on the basis of electromagnetism. In these miniature circuit breakers, the current is run through a solenoid, and, in the event of excess current flow, the magnetic pull of the solenoid is sufficient to force open the circuit breaker's contacts (often indirectly through a tripping mechanism). A better design however arises by inserting a bimetallic strip before the solenoid—this means that instead of always producing a magnetic force, the solenoid only produces a magnetic force when the current is strong enough to deform the bimetallic strip and complete the solenoid's circuit.

Relays

In higher powered applications, the protective relays that detect a fault and initiate a trip are separate from the circuit breaker. Early relays worked based upon electromagnetic principles similar to those mentioned in the previous paragraph, modern relays are application-specific computers that determine whether to trip based upon readings from the power system. Different relays will initiate trips depending upon different protection schemes. For example, an overcurrent relay might initiate a trip if the current on any phase exceeds a certain threshold whereas a set of differential relays might initiate a trip if the sum of currents between them indicates there may be current leaking to earth. The circuit breakers in higher powered applications are different too. Air is typically no longer sufficient to quench the arc that forms when the contacts are forced open so a variety of techniques are used. One of the most popular techniques is to keep the chamber enclosing the contacts flooded with sulfur hexafluoride (SF6)—a non-toxic gas that has sound arc-quenching properties. Other techniques are discussed in the reference.

Residual current devices

The second problem, the inadequacy of fuses to act as the sole safety device in most power systems, is probably best resolved by the use of residual current devices (RCDs). In any properly functioning electrical appliance the current flowing into the appliance on the active line should equal the current flowing out of the appliance on the neutral line. A residual current device works by monitoring the active and neutral lines and tripping the active line if it notices a difference. Residual current devices require a separate neutral line for each phase and to be able to trip within a time frame before harm occurs. This is typically not a problem in most residential applications where standard wiring provides an active and neutral line for each appliance (that's why your power plugs always have at least two tongs) and the voltages are relatively low however these issues do limit the effectiveness of RCDs in other applications such as industry. Even with the installation of an RCD, exposure to electricity can still prove lethal.

SCADA systemsST

In large electric power systems, Supervisory Control And Data Acquisition (SCADA) is used for tasks such as switching on generators, controlling generator output and switching in or out system elements for maintenance. The first supervisory control systems implemented consisted of a panel of lamps and switches at a central console near the controlled plant. The lamps provided feedback on the state of plant (the data acquisition function) and the switches allowed adjustments to the plant to be made (the supervisory control function). Today, SCADA systems are much more sophisticated and, due to advances in communication systems, the consoles controlling the plant no longer need to be near the plant itself. Instead it is now common for plants to be controlled with equipment similar (if not identical) to a desktop computer. The ability to control such plants through computers has increased the need for security—there have already been reports of cyber-attacks on such systems causing significant disruptions to power systems.

Power systems in practice

Despite their common components, power systems vary widely both with respect to their design and how they operate. This section introduces some common power system types and briefly explains their operation.

Residential power system

Residential dwellings almost always take supply from the low voltage distribution lines or cables that run past the dwelling. These operate at voltages of between 110 and 260 volts (phase-to-earth) depending upon national standards. A few decades ago small dwellings would be fed a single phase using a dedicated two-core service cable (one core for the active phase and one core for the neutral return). The active line would then be run through a main isolating switch in the fuse box and then split into one or more circuits to feed lighting and appliances inside the house. By convention, the lighting and appliance circuits are kept separate so the failure of an appliance does not leave the dwelling's occupants in the dark. All circuits would be fused with an appropriate fuse based upon the wire size used for that circuit. Circuits would have both an active and neutral wire with both the lighting and power sockets being connected in parallel. Sockets would also be provided with a protective earth. This would be made available to appliances to connect to any metallic casing. If this casing were to become live, the theory is the connection to earth would cause an RCD or fuse to trip—thus preventing the future electrocution of an occupant handling the appliance. Earthing systems vary between regions, but in countries such as the United Kingdom and Australia both the protective earth and neutral line would be earthed together near the fuse box before the main isolating switch and the neutral earthed once again back at the distribution transformer.

There have been a number of minor changes over the year to practice of residential wiring. Some of the most significant ways modern residential power systems tend to vary from older ones include:

For convenience, miniature circuit breakers are now almost always used in the fuse box instead of fuses as these can easily be reset by occupants.
For safety reasons, RCDs are now installed on appliance circuits and, increasingly, even on lighting circuits.
Dwellings are typically connected to all three-phases of the distribution system with the phases being arbitrarily allocated to the house's single-phase circuits.
Whereas air conditioners of the past might have been fed from a dedicated circuit attached to a single phase, centralised air conditioners that require three-phase power are now becoming common.
Protective earths are now run with lighting circuits to allow for metallic lamp holders to be earthed.
Increasingly residential power systems are incorporating microgenerators, most notably, photovoltaic cells.

Commercial power systems

Commercial power systems such as shopping centers or high-rise buildings are larger in scale than residential systems. Electrical designs for larger commercial systems are usually studied for load flow, short-circuit fault levels, and voltage drop for steady-state loads and during starting of large motors. The objectives of the studies are to assure proper equipment and conductor sizing, and to coordinate protective devices so that minimal disruption is cause when a fault is cleared. Large commercial installations will have an orderly system of sub-panels, separate from the main distribution board to allow for better system protection and more efficient electrical installation.

Typically one of the largest appliances connected to a commercial power system is the HVAC unit, and ensuring this unit is adequately supplied is an important consideration in commercial power systems. Regulations for commercial establishments place other requirements on commercial systems that are not placed on residential systems. For example, in Australia, commercial systems must comply with AS 2293, the standard for emergency lighting, which requires emergency lighting be maintained for at least 90 minutes in the event of loss of mains supply. In the United States, the National Electrical Code requires commercial systems to be built with at least one 20A sign outlet in order to light outdoor signage. Building code regulations may place special requirements on the electrical system for emergency lighting, evacuation, emergency power, smoke control and fire protection.


Wednesday, 11 January 2017

Interview questions about Power system protection?

Initiative

Power systems whether old or new have some special protection and safety devices to make system free of damages and failure of operation.Many devices are used to achieve this mechanism,few devices in this regard are at hitlist those are as follows,
Fuse
Circuit Breaker
Relays
Residual current devices

Question:Explain the purpose of fuse in a power system?

 Ans:The first and the most common quintessential protecting device is fuse.One should remember that what is fuse, fuse is a simple strip or metal piece that melts upon the passing of heavy current through it.The flow of heavy current through a fuse while melting fuse produce an arc across the gap that is later on extinguished with the help of circuit interruption by any special technique or special method.Fuses can be considered as the weak point of the system that contribute according to their capability in the protecting  power system.

Question:Give two drawbacks of fuses?

Ans:While dealing with fuses in order to protect the power system from damages,two limitations are associated with fuses.Firstly when fault occurs means excess amount of current passes through fuse,it is necessary to replace the fuse.It is obvious that in the moments of fault if fault is at distant place or urgeantly we do not have fuse,this replacement can be a big loss to the power system.. Secondly,fuse alone is an unadequate safety device to protect the system.The reason is that the amount of current that fuse  allows to flow through it is in excess amount so this can be lethal to the animals and human equally.

Question:How two problems of fuse are resolved?

Ans:First problem of replacing the old fuse with new one is sold by using circuit breakers. Typically circuit breaker used for this purpose is miniature circuit breaker. While second problem is resolved by the usage of Residual current devices.

Question:What is a Miniature circuit breaker?

Ans:A miniature circuit collectively combines the tripping mechanism and the mechanism of current flow breakage  in a single unit.In such miniature circuit breakers flow of current is through a solenoid.The magnetic pull of solenoid  helps us in opening beaker contacts on the occasion of excess current flow.

Question:What is Residual current devices?

Ans:A residual current device basically monitors neutral and active lines and performs mechanism of tripping the active line  if it feels a fault or a difference.The requirement of residual device is the availability of a neutral line for each phase and for the proper tripping too.

Question:What is function of a relay?

Ans:The function of relay is the detection of fault and tripping mechanism of breaker contacts.

Question:Give brief introduction of two types of relays?

Ans:An over current relay initiates the tripping process if adequate amount of current exceeds on  any phase.Similarly,a set of differential relay starts tripping phenomenon if collective current between two feels to be leaking to earth.

Types of protection

High-voltage transmission network

Protection on the transmission and distribution serves two functions: Protection of plant and protection of the public (including employees). At a basic level, protection looks to disconnect equipment which experience an overload or a short to earth. Some items in substations such as transformers might require additional protection based on temperature or gas pressure, among others.

Generator sets

In a power plant, the protective relays are intended to prevent damage to alternators or to the transformers in case of abnormal conditions of operation, due to internal failures, as well as insulating failures or regulation malfunctions. Such failures are unusual, so the protective relays have to operate very rarely. If a protective relay fails to detect a fault, the resulting damage to the alternator or to the transformer might require costly equipment repairs or replacement, as well as income loss from the inability to produce and sell energy.

Overload and back-up for distance (overcurrent)

Overload protection requires a current transformer which simply measures the current in a circuit. There are two types of overload protection: instantaneous overcurrent and time overcurrent (TOC). Instantaneous overcurrent requires that the current exceeds a predetermined level for the circuit breaker to operate. TOC protection operates based on a current vs time curve. Based on this curve if the measured current exceeds a given level for the preset amount of time, the circuit breaker or fuse will operate.

Earth fault ("ground fault" in the United States)

Earth fault protection again requires current transformers and senses an imbalance in a three-phase circuit. Normally the three phase currents are in balance, i.e. roughly equal in magnitude. If one or two phases become connected to earth via a low impedance path, their magnitudes will increase dramatically, as will current imbalance. If this imbalance exceeds a pre-determined value, a circuit breaker should operate. Restricted earth fault protection is a type of earth fault protection which looks for earth fault between two sets current transformers[4] (hence restricted to that zone).

Distance (impedance relay)

Distance protection detects both voltage and current. A fault on a circuit will generally create a sag in the voltage level. If the ratio of voltage to current measured at the relay terminals, which equates to an impedance, lands within a predetermined level the circuit breaker will operate. This is useful for reasonable length lines, lines longer than 10 miles, because its operating characteristics are based on the line characteristics. This means that when a fault appears on the line the impedance setting in the relay is compared to the apparent impedance of the line from the relay terminals to the fault. If the relay setting is determined to be below the apparent impedance it is determined that the fault is within the zone of protection. When the transmission line length is too short, less than 10 miles, distance protection becomes more difficult to coordinate. In these instances the best choice of protection is current differential protection[citation needed.

Back-up

The objective of protection is to remove only the affected portion of plant and nothing else. A circuit breaker or protection relay may fail to operate. In important systems, a failure of primary protection will usually result in the operation of back-up protection. Remote back-up protection will generally remove both the affected and unaffected items of plant to clear the fault. Local back-up protection will remove the affected items of the plant to clear the fault.

Low-voltage networks

The low-voltage network generally relies upon fuses or low-voltage circuit breakers to remove both overload and earth faults.Courtesy of wikipedia...