Voice control and
remote control wheel chair is such a sort of project in which wheel chair is
controlled with respect to voice and remote. Here geetech speech recognition module is
used for wheel chair controlling by voice. And double pole double throw
switch(DPDT switch) is used for remote control purposes. A wheel chair will be
controlled by geetech in left and right, forward and backward directions and
stop too. The DPDT switch helps us controlling wheel chair in remote fashion
manually.(coming soon)
Required Components:
·
Geetech speech recognition
·
LM293D motor driver
·
Aurdino UNO
·
DC motors
·
Resistors
·
Wheel chair structure
·
DPDT Switches
·
Batteries
·
Voltage regulator
·
2 core shield wire
Block diagram
Proposed
methodology:
Methodology that we
are going to suppose in voice control and remote control project is of special interest
and informative too. Geetech that is voice recognition module synchronized with
arduino. Voice control module has three groups but we are using only one group.
One group contains a proper functionality by which we synchronize geetech
module with arduino in such a way that left and right, forward and backward
directions movement is achieved according to instructions provided to arduino
of our choice and furthermore we can stop smart wheelchair by doing programming
in arduino. The synchronized connection between geetech module and arduino
becomes possible by mutual interlinking transmitters and receivers of both
arduino and voice recognition module. Two motors connected to the arduino pins
get arduino instructions in the form of left and right,forward and backward
directions and stop mode and work according to these instructions properly.
The second part is
remote control that is performed using two double pole double throw switch(DPDT
switch).This switch comprises six points or six pinholes that are directly
connected to the motors and turning of of the switch helps us controlling the
motor using remote manually. Furthermore,two
wire shield wire is used for efficient connections and performance.
Types of Wheelchair
There are a wide variety of types of wheelchair, differing by propulsion method, mechanisms of control, and technology used. Some wheelchairs are designed for general everyday use, others for single activities, or to address specific access needs. Innovation within the wheelchair industry is relatively common, but many innovations ultimately fall by the wayside, either from over-specialization, or from failing to come to market at an accessible price-point. The iBot is perhaps the best known example of this in recent years.
Manual self-propelled wheelchairs
A self-propelled manual wheelchair incorporates a frame, seat, one or two footplates (footrests) and four wheels: usually two caster wheels at the front and two large wheels at the back. There will generally also be a separate seat cushion. The larger rear wheels usually have push-rims of slightly smaller diameter projecting just beyond the tyre; these allow the user to manouevre the chair by pushing on them without requiring them to grasp the tyres. Manual wheelchairs generally have brakes that bear on the tyres of the rear wheels, however these are solely a parking brake and in-motion braking is provided by the user's palms bearing directly on the push-rims. As this causes friction and heat build-up, particularly on long downslopes, many wheelchair users will choose to wear padded wheelchair gloves. Manual wheelchairs often have two push handles at the upper rear of the frame to allow for manual propulsion by a second person, however many active wheelchair users will remove these to prevent unwanted pushing from people who believe they are being helpful.
Everyday manual wheelchairs come in two major varieties, folding or rigid. Folding chairs are generally low-end designs, whose predominant advantage is being able to fold, generally by bringing the two sides together. However this is largely an advantage for part-time users who may need to store the wheelchair more often than use it. Rigid wheelchairs, which are increasingly preferred by full-time and active users, have permanently welded joints and many fewer moving parts. This reduces the energy required to push the chair by eliminating many points where the chair would flex and absorb energy as it moves. Welded rather than folding joints also reduce the overall weight of the chair. Rigid chairs typically feature instant-release rear wheels and backrests that fold down flat, allowing the user to dismantle the chair quickly for storage in a car. A few wheelchairs attempt to combine the features of both designs by providing a fold-to-rigid mechanism in which the joints are mechanically locked when the wheelchair is in use.
Many rigid models are now made with ultralight materials such as aircraft-grade aluminium and titanium, and wheelchairs of composite materials such as carbon-fibre have started to appear. Ultralightweight rigid wheelchairs are commonly known as 'active user chairs' as they are ideally suited to independent use. Another innovation in rigid chair design is the installation of shock absorbers, such as Frog Legs, which cushion the bumps over which the chair rolls. These shock absorbers may be added to the front wheels, to the rear wheels, or both. Rigid chairs also have the option for their rear wheels to have a camber, or tilt, which angles the tops of the wheels in toward the chair. This allows for more mechanically efficient propulsion by the user and also makes it easier to hold a straight line while moving across a slope. Sport wheelchairs often have large camber angles to improve stability.
Rigid-framed chairs are generally made to measure, to suit both the specific size of the user and their needs and preferences around areas such as the "tippyness" of the chair - its stability around the rear axle. Experienced users with sufficient upper-body strength can generally balance the chair on its rear wheels, a "wheelie", and the "tippyness" of the chair controls the ease with which this can be initiated. The wheelie allows an independent wheelchair user to climb and descend curbs and move more easily over small obstacles and irregular ground such as cobbles.
The rear wheels of self-propelled wheelchairs typically range from 20–24 inches (51–61 cm)in diameter, and commonly resemble bicycle wheels. Wheels are rubber-tyred and may be solid, pneumatic or gel-filled. The wheels of folding chairs may be permanently attached, but those for rigid chairs are commonly fitted with quick-release axles activated by depressing a button at the centre of the wheel.
All major varieties of wheelchair can be highly customised for the user's needs. Such customisations may encompass the seat dimensions, height, seat angle, footplates, leg rests, front caster outriggers, adjustable backrests and controls. Various optional accessories are available, such as anti-tip bars or wheels, safety belts, adjustable backrests, tilt and/or recline features, extra support for limbs or head and neck, holders for crutches, walkers or oxygen tanks, drink holders, and mud and wheel-guards as clothing protectors.
Light weight and high cost are related in the manual wheelchair market. At the low-cost end, heavy, folding steel chairs with sling seats and little adaptability dominate. Users may be temporarily disabled, or using such a chair as a loaner, or simply unable to afford better. These chairs are common as "loaners" at large facilities such as airports, amusement parks and shopping centers. A slightly higher price band sees the same folding design produced in aluminium. Price typically then jumps from low to mid hundreds of pounds/dollars/euros to a four figure price range, with individually custom manufactured lightweight chairs with more options. The high end of the market contains ultra-light models, extensive seating options and accessories, all-terrain features, and so forth. The most expensive manual chairs may rival the cost of a small car.
Manual attendant-propelled wheelchairs
An attendant-propelled wheelchair is generally similar to a self-propelled manual wheelchair, but with small diameter wheels at both front and rear. The chair is manoeuvred and controlled by a person standing at the rear and pushing on handles incorporated into the frame. Braking is supplied directly by the attendant who will usually also be provided with a foot- or hand-operated parking brake.
These chairs are common in institutional settings and as loaner-chairs in large public venues. They are usually constructed from steel as light weight is less of a concern when the user is not required to self-propel.
Specially designed transfer chairs are now required features at airports in much of the developed world in order to allow access down narrow airliner aisles and facilitate the transfer of wheelchair-using passengers to and from their seats on the aircraft.
Powered wheelchairs
Main article: Motorized wheelchair
An electric-powered wheelchair, commonly called a "powerchair" is a wheelchair which additionally incorporates batteries and electric motors into the frame and that is controlled by either the user or an attendant, most commonly via a small joystick mounted on the armrest, or on the upper rear of the frame. For users who cannot manage a manual joystick, headswitches, chin-operated joysticks, sip-and-puff controllers or other specialist controls may allow independent operation of the wheelchair. Ranges of over 10 miles/15 km are commonly available from standard batteries.
Powerchairs are commonly divided by their access capabilities. An indoor-chair may only reliably be able to cross completely flat surfaces, limiting them to household use. An indoor-outdoor chair is less limited, but may have restricted range or ability to deal with slopes or uneven surfaces. An outdoor chair is more capable, but will still have a very restricted ability to deal with rough terrain. A very few specialist designs offer a true cross-country capability.
Powerchairs have access to the full range of wheelchair options, including ones which are difficult to provide in an unpowered manual chair, but have the disadvantage of significant extra weight. Where an ultra-lightweight manual chair may weigh under 10Kg, the largest outdoor power-chairs may weigh 200Kg or more.
Smaller power chairs often have four wheels, with front or rear wheel drive, but large outdoor designs commonly have six wheels, with small wheels at front and rear and somewhat larger powered wheels in the centre.
A power-assisted wheelchair is a recent development that uses the frame & seating of a typical rigid manual chair while replacing the standard rear wheels with wheels of similar size which incorporate batteries and battery-powered motors in the hubs. A floating rim design senses the pressure applied by the users push & activates the motors proportionately to provide a power assist. This results in the convenience, and small size of a manual chair while providing motorised assistance for rough/uneven terrain & steep slopes that would otherwise be difficult or impossible to navigate, especially by those with limited upper-body function. As the wheels necessarily come at a weight penalty it is often possible to exchange them with standard wheels to match the capabilities of the wheelchair to the current activity.
Mobility scooters
Mobility scooters share some features with powerchairs, but primarily address a different market segment, people with a limited ability to walk, but who might not otherwise consider themselves disabled. Smaller mobility scooters are typically three wheeled, with a base on which is mounted a basic seat at the rear, with a control tiller at the front. Larger scooters are frequently four-wheeled, with a much more substantial seat.
Opinions are often polarized as to whether mobility scooters should be considered wheelchairs or not, and negative stereotyping of scootr users is worse than for manual or powerchair users. Some commercial organisations draw a distinction between powerchairs and scooters when making access provisions due to a lack of clarity in the law as to whether scooters fall under the same equality legislation as wheelchairs.
Single-arm drive wheelchairs
One-arm or single arm drive enables a user to self-propel a manual wheelchair using only a single arm. The large wheel on the same side as the arm to be used is fitted with two concentric handrims, one of smaller diameter than the other. On most models the outer, smaller rim, is connected to the wheel on the opposite side by an inner concentric axle. When both handrims are grasped together, the chair may be propelled forward or backward in a straight line. When either handrim is moved independently, only a single wheel is used and the chair will turn left or right in response to the handrim used. Some wheelchairs, designed for use by hemiplegics, provide a similar function by linking both wheels rigidly together and using one of the footplates to control steering via a linkage to the front caster.
Reclining wheelchairs
Reclining or tilt-in-space wheelchairs have seating surfaces which can be tilted to various angles. The original concept was developed by an orthotist, Hugh Barclay, who worked with disabled children and observed that postural deformities such as scoliosis could be supported or partially corrected by allowing the wheelchair user to relax in a tilted position. The feature is also of value to users who are unable to sit upright for extended periods for pain or other reasons. Various designs are now available and wheelchairs with the feature may either tilt the seat-back and legrests in relation to the seat, or may tilt the entire back, seat and legrest as one, depending on the need of the user.
Standing wheelchairs
A standing wheelchair is one that supports the user in a nearly standing position. They can be used as both a wheelchair and a standing frame, allowing the user to sit or stand in the wheelchair as they wish. Some versions are entirely manual, others have powered stand on an otherwise manual chair, while others have full power, tilt, recline and variations of powered stand functions available. The benefits of such a device include, but are not limited to: aiding independence and productivity, raising self-esteem and psychological well-being, heightening social status, extending access, relief of pressure, reduction of pressure sores, improved functional reach, improved respiration, reduced occurrence of UTI, improved flexibility, help in maintaining bone mineral density, improved passive range motion, reduction in abnormal muscle tone and spasticity, and skeletal deformities. Other wheelchairs provide some of the same benefits by raising the entire seat to lift the user to standing height.
Sports wheelchairs
A modern racing wheelchair
A range of disabled sports have been developed for disabled athletes, including basketball, rugby, tennis, racing and dancing. The wheelchairs used for each sport have evolved to suit the specific needs of that sport and often no longer resemble their everyday cousins. They are usually non-folding (in order to increase rigidity), with a pronounced negative camber for the wheels (which provides stability and is helpful for making sharp turns), and often are made of composite, lightweight materials. Even seating position may be radically different, with racing wheelchairs generally used in a kneeling position. Sport wheelchairs are rarely suited for everyday use, and are often a 'second' chair specifically for sport use, although some users prefer the sport options for everyday. Some disabled people, for instance lower-limb amputees, may use a wheelchair for sports, but not for everyday activities.
Wheelchair stretchers
Wheelchair stretchers are a variant of wheeled stretchers/gurneys that can accommodate a sitting patient, or be adjusted to lie flat to help in the lateral (or supine) transfer of a patient from a bed to the chair or back. Once transferred, the stretcher can be adjusted to allow the patient to assume a sitting position.
All-terrain wheelchairs
All-terrain wheelchairs can allow users to access terrain otherwise completely inaccessible to a wheelchair user. Two different formats have been developed. One hybridises wheelchair and mountain bike technology, generally taking the form of a frame within which the user sits and with four mountain bike wheels at the corners. In general there are no push-rims and propulsion/braking is by pushing directly on the tyres.
A more common variant is the beach wheelchair which can allow better mobility on beach sand, including in the water, on uneven terrain, and even on snow. The common adaptation among the different designs is that they have extra-wide balloon wheels or tires, to increase stability and decrease ground pressure on uneven or unsteady terrain. Different models are available, both manual and battery-driven. In some countries in Europe, where accessible tourism is well established, many beaches have wheelchairs of this type available for loan/hire.
iBot
iBot was a radical powerchair developed by Dean Kamen to incorporate gyroscopic and active control technology, enabling the chair to balance and run on only two of its four wheels on some surfaces, thus raising the user to standing height. It was also able to climb stairs by leveraging the standing feature. The popular Segway Personal Transporter is a mobility device that was a direct outgrowth of the development of the iBOT wheelchair. The Segway, which is basically an iBOT with two wheels removed, was developed explicitly to increase the number of units produced and take advantage of the economies of scale to attempt to make the iBOT affordable to wheelchair users. While popular in concept, the $25,000 iBot, which was developed as a joint venture between Johnson and Johnson's Independence Technology and Kamen's DEKA Research, was priced at too high a price point to sustain the needed production and was discontinued in January 2009.
Smart wheelchairs
A smart wheelchair is any powerchair using a control system to augment or replace user control. Its purpose is to reduce or eliminate the user's task of driving a powerchair. Usually, a smart wheelchair is controlled via a computer, has a suite of sensors and applies techniques in mobile robotics, but this is not necessary. The interface may consist of a conventional wheelchair joystick, a "sip-and-puff" device or a touch-sensitive display. This differs from a conventional powerchair, in which the user exerts manual control over speed and direction without intervention by the wheelchair's control system.
Smart wheelchairs are designed for a variety of user types. Some are designed for users with cognitive impairments, such as dementia, these typically apply collision-avoidance techniques to ensure that users do not accidentally select a drive command that results in a collision. Othersfocus on users living with severe motor disabilities, such as cerebral palsy, or with quadriplegia, and the role of the smart wheelchair is to interpret small muscular activations as high-level commands and execute them. Such wheelchairs typically employ techniques from artificial intelligence, such as path-planning.Courtesy of wikipedia...